Positive Solutions of Singular Complementary Lidstone Boundary Value Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Solutions of Complementary Lidstone Boundary Value Problems

Positive Solutions of Complementary Lidstone Boundary Value Problems Ravi P. Agarwal and Patricia J. Y. Wong Department of Mathematics, Texas A&M University – Kingsville, Kingsville, TX 78363, USA. e-mail: [email protected]; Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia. School of Electrical and Electronic Engineering, Nanyang Technological...

متن کامل

Eigenvalues of complementary Lidstone boundary value problems

where l > 0. The values of l are characterized so that the boundary value problem has a positive solution. Moreover, we derive explicit intervals of l such that for any l in the interval, the existence of a positive solution of the boundary value problem is guaranteed. Some examples are also included to illustrate the results obtained. Note that the nonlinear term F depends on y’ and this deriv...

متن کامل

Complementary Lidstone Interpolation and Boundary Value Problems

1 Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA 2 Mathematics and Statistics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia 3 Department of Mathematics, Azores University, R. Mãe de Deus, 9500-321 Ponta Delgada, Portugal 4 School of ELectrical & Electronic Engineering, Nanyang Technological University, Sin...

متن کامل

Positive Solutions for a Class of Singular Boundary-value Problems

This paper concerns the existence and multiplicity of positive solutions for Sturm-Liouville boundary-value problems. We use fixed point theorems and the sub-super solutions method to two solutions to the problem studied. Introduction Consider the boundary-value problem Lu = λf(t, u), 0 < t < 1 αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0, (0.1) where Lu = −(ru′)′ + qu, r, q ∈ C[0, 1] with r > 0, q ≥ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2010

ISSN: 1687-2770

DOI: 10.1155/2010/368169